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Abstract. Let R be a commutative ring such that R = R1 × · · · × Rn. In

this paper, we give a method to compute (strong) Sagbi bases for subalgebras

of a polynomial ring over R provided that these bases are computable in a

polynomial ring over Ri for 1 ≤ i ≤ n. As an application, we prove the

existence of strong Sagbi bases for subalgebras in a polynomial ring over a

principal ideal ring.
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1. Introduction and preliminaries

Gröbner bases were first introduced by Bruno Buchberger to solve polynomial

ideal theory problems over fields ([3]). Later, this theory was extended in a polyno-

mial ring over noetherian commutative rings ([2]). Gröbner bases are essential tools

in computational algebraic geometry and polynomial algebra ([4]). Moreover, over

commutative noetherian rings, strong Gröbner bases have been introduced (see [7]

and [8]), which are Gröbner bases with additional properties that can augment the

efficiency and efficacy of various algebraic computations.

Sagbi bases, a generalization of Gröbner bases to the context of subalgebras,

were introduced by Robianno and Sweedler over fields ([5], [9]). Miller extended

this concept for polynomial rings over noetherian commutative rings ([6]). Unlike

Gröbner bases, Sagbi bases could be infinite for even finitely generated subalgebras.

They are used to study subalgebras of polynomial rings arising in geometric con-

texts, such as invariant, toric, and coordinate rings of algebraic varieties ([10]). In

[1], the concept of strong Sagbi bases was introduced, showing that they exist in a

polynomial ring over principal ideal domains.

Let R be a commutative ring with unity and a finite direct product of commu-

tative rings Ri with unities. In [8], a method is developed to construct (strong)

Gröbner bases of non-zero ideals in polynomial rings over R. It is achieved by join-

ing (strong) Gröbner bases of the projected ideals in polynomial rings over Ri. This
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work aims to develop an analogous method for (strong) Sagbi bases for subalgebras

of a polynomial ring over R. As an application of our work, we prove the existence

of a strong Sagbi basis in a polynomial ring over a principal ideal ring (which is a

commutative ring such that all its ideals are principal and can be viewed as a direct

product of principal ideal domains and finite chain rings, see Theorem 33, Section

15, Chapter 4 of [11]).

The article is structured as follows: The polynomial ring in t variables x1, x2,

· · · , xt over the ring R is denoted by R[x]. In Section 2, the S-join is defined for

the subsets of Ri[x] for i = 1, · · · , n (see Definition 2.2). We also prove that the

Sagbi bases for subalgebras of R[x] can be obtained by S-joining of Sagbi bases for

projected subalgebras of Ri[x] (see Proposition 2.3). Moreover, we define the con-

cept of strong S-join for the subsets of R1[x] and R2[x], respectively (see Definition

2.10). We also present a key result (Theorem 2.11) which demonstrates that the

strong Sagbi bases for subalgebras of R[x] can be obtained by strong S-joining of the

strong Sagbi bases for the projected subalgebras of R1[x] and R2[x], respectively.

Furthermore, we provide Proposition 2.12 which enables us to generalize Theorem

2.11 for R = R1 × · · · × Rn. We also present Algorithm 2.14 to compute strong

Sagbi bases for the subalgebras in R[x]. In Section 3, we prove the existence of a

strong Sagbi basis in a polynomial ring over a principal ideal ring (see Theorem

3.5).

Let > be an admissible monomial ordering on the set of monomials (power

product of indeterminates xi) of R[x]. If f ∈ R[x], then we can write it as f =∑
k cktk where 0 6= ck ∈ R and tk is the monomial. We denote the leading monomial

tl which is maxk{tk} by lm(f), the leading coefficient cl which is the coefficient of

tl by lc(f) and leading term cltl by lt(f).

Let G = {g1, g2, · · · , gs} be a subset of R[x] and > be a monomial ordering

on R[x]. We denote by R[G], a subalgebra of R[x] finitely generated by G whose

elements could be viewed as a polynomial in terms of elements of G. For β =

(β1, β2, · · · , βs) ∈ N|G|, let Gβ = gβ1

1 gβ2

2 · · · gβs
s be a G-monomial. We say that f in

R[G] has a subalgebra standard representation with respect to G if f =
∑
j cjG

αj ,

where ci ∈ R \ {0} and αj ∈ N|G| such that lm(Gαj ) ≤ lm(f). We write SStd(G)

for the polynomials of R[G] which have a subalgebra standard representation with

respect to G. Now, we can define Sagbi and strong Sagbi bases.

Definition 1.1. Let B be a subalgebra of R[x], and let G be a finite set of R[x]\{0}.
Then G is called a Sagbi basis for a subalgebra B if B \ {0} = SStd(G).
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Definition 1.2. For a finite set G of R[x]\{0}, G is called a strong Sagbi basis for

a subalgebra B of R[x] if for any f ∈ B\{0}, lt(f) = lt(cjG
αj ) for some cj ∈ R\{0}

and αj ∈ N|G|. Also, a strong Sagbi basis G is called minimal if no proper subset

of G is a strong Sagbi basis for B.

Throughout the article, we assume that R = R1 × · · · × Rn, where Ri is also

a commutative ring with unity for 1 ≤ i ≤ n. Note that all the above notions

also hold for Ri[x]. Moreover, for computational feasibility, it is assumed that the

subalgebras admit finite (strong) Sagbi bases.

2. S-join and strong S-join

In this section, we introduce the term S-join (strong S-join) and compute a Sagbi

basis (strong Sagbi basis) for subalgebras of R[x].

Let πi : R → Ri be projections which induce maps π : R[x] → Ri[x]. More-

over, these maps induce a map π : R[x] → R1[x] × · · · × Rm[x] given by π(f) =

(π1(f), · · · , πm(f)). Let κ : R1[x] × · · · × Rm[x] → R[x] be a map which collects

coefficient of like terms. We can see that π and κ are mutually inverse ring homo-

morphisms.

Now, we see a result which shows that a projection of a Sagbi basis for a subal-

gebra is a Sagbi basis for the projected subalgebra.

Proposition 2.1. If G is a finite Sagbi basis for non-zero finitely generated subal-

gebra B ⊂ R[x], then πi(G)\{0} is a Sagbi basis for πi(B) in Ri[x] for i = 1, · · · ,m.

Proof. We can assume that i = 1. For f1 ∈ π1(B) \ {0} ⊂ R1[x], we need to

show that f1 ∈ SStd(π1(G)). Let f = κ(f1, 0, · · · , 0) ∈ B, therefore, lt(f) =

(lc(f1), 0, · · · , 0)lm(f1) such that lm(f) = lm(f1). Since G is a Sagbi basis for

B which implies f =
∑
j cjG

αj for some cj ∈ R \ {0} and αj ∈ N|G| with

lm(Gαj ) ≤ lm(f) = lm(f1). After taking projection with respect to π1, we have

f1 =
∑
j π1(cj)π1(Gαj )=

∑
j π1(cj)π1(G)αj such that lm(π1(Gαj )) ≤ lm(Gαj ) ≤

lm(f) = lm(f1), where π1(cj) ∈ R1 and π1(G)αj is a π1(G)-monomial. Therefore,

f1 ∈ SStd(π1(G)) and π1(G) is a Sagbi basis for π1(B) in R1[x]. �

Now, we define the S-join of n sets to find a Sagbi basis for a subalgebra of R[x]

with the help of Sagbi bases of the projected subalgebras in Ri[x] for i = 1, · · · , n.

Definition 2.2. Let Gi ⊂ Ri[x] \ {0} for i = 1, 2, · · · , n. Then G1 t · · · tGn, the

S-join of Gi is the subset G1 × {0}n−1 ∪ · · · ∪ {0}n−1 ×Gn of R1[x]× · · · ×Rn[x].
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Proposition 2.3. Let B be a non-zero subalgebra of R[x] and Gi ⊂ πi(B) for

i = 1, · · · ,m. Then κ(G1 t · · · tGm) is a Sagbi basis for B if and only if Gi is a

Sagbi basis for πi(B) for all i = 1, · · · ,m.

Proof. ⇐= Let H = κ(G1 t · · · tGm) ⊂ B. Since SStd(H) ⊂ B, we only need to

show that B ⊂ SStd(H) if each Gi is a Sagbi basis for πi(B). Let f ∈ B\{0} which

implies that πi(f) ∈ πi(B) = SStd(Gi), therefore, we can write πi(f) =
∑
ji
cjiG

αji
i

for some cji ∈ Ri \ {0}, αji ∈ N|Gi| with lm(G
αji
i ) ≤ lm(πi(f)) = lm(f), where

1 ≤ i ≤ n. Then

f = κ(π1(f), · · · , πm(f))

=κ(π1(f), 0, · · · , 0) + · · ·+ κ(0, · · · , 0, πm(f))

=κ(
∑
j1
cj1G

αj1
1 , 0, · · · , 0) + · · ·+ κ(0, · · · , 0,

∑
jm
cjmG

αjm
m )

=
∑
j1

(cj1 , 0, · · · , 0)κ(G
αj1
1 , 0, · · · , 0) + · · ·+

∑
jm

(0, · · · , 0, cjm)κ(0, · · · , 0, Gαjm
m ).

Since κ(0, · · · , 0, Gαji
i , 0, · · · , 0) ∈ R[H] and lm(κ(0, · · · , 0, Gαji

i , 0, · · · , 0)) =

lm(G
αji
i ) ≤ lm(f) for all i and j, we have f ∈ SStd(H). It follows from Proposition

2.1. �

Example 2.4. Let G = {g1 = 2x2 + 3x+ 1, g2 = 2x+ 1} ⊂ Z6[x] and B = Z6[G].

Note that G is not a Sagbi basis for subalgebra B since 3x ∈ B but 3x /∈ SStd(G)

as 3x = 3(2x2+3x+1)+3(2x+1) and lm(2x2+3x+1) > lm(3x). The isomorphism

χ : Z6 → Z2×Z3 induces an isomorphism χ : Z6[x]→ (Z2×Z3)[x]. We have χ(g1) =

(0, 2)x2+(1, 0)x+(1, 1), χ(g2) = (0, 2)x+(1, 1) and χ(B) = (Z2×Z3)[χ(g1), χ(g2)].

On applying the map π induced by the projection maps π1 : (Z2×Z3)[x] −→ Z2[x]

and π2 : (Z2×Z3)[x] −→ Z3[x], we have π(χ(g1)) = (x+1, 2x2 +1) and π(χ(g2)) =

(1, 2x+1). The projected subalgebras π1(χ(B)) = Z2[x+1, 1], π2(χ(B)) = Z3[2x2+

1, 2x+ 1] have Sagbi bases G1 = {x} and G2 = {x2 + 2, x+ 2}, respectively. Now,

by Proposition 2.3, κ(G1tG2) = {(1, 0)x, (1, 0), (0, 1)x2+(0, 2), (0, 1)x+(0, 2)} is a

Sagbi basis for χ(B) which implies that H = χ−1(κ(G1tG2)) = {3x, 4x2+2, 4x+2}
is a Sagbi basis for B.

Remark 2.5. In Example 2.4, G1 and G2 are strong Sagbi bases of Z2[x+1, 1] and

Z3[2x2 +1, 2x+1], respectively but the Sagbi basis H obtained after S-join is not a

strong Sagbi basis since (4x2+2)−(3x)2+3 = x2+5 ∈ B, therefore lt(x2+5) = x2.

However, the set of leading terms of H is lt(H) = {3x, 4x2, 4x} and also observe

that 3 and 4 are not units in Z6, so there does not exist any H-monomial H and

element c ∈ Z6 such that lt(cH) = x2.
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The following result shows that we can use a strong Sagbi basis for a subalgebra

B in R[x] to obtain strong Sagbi bases in the projected subalgebras πi(B) ⊂ Ri[x].

Proposition 2.6. Let B be a non-zero finitely generated subalgebra of R[x]. If G

is a finite strong Sagbi basis for B, then πi(G)\{0} is a strong Sagbi basis for πi(B)

in Ri[x] for i = 1, · · · ,m.

Proof. We can assume that i = 1 and f1 ∈ π1(B) \ {0} ⊂ R1[x]. Put f =

κ(f1, 0, · · · , 0) ∈ B. Since G is a strong Sagbi basis for B, there exists α ∈ N|G|,
c ∈ R \ {0} such that lt(f) = lt(cGα) and π1(lt(cGα)) = lt(f1). This means that

π1(lt(cGα)) 6= 0, so π1(cGα) 6= 0 and π1(lt(cGα)) = lt(π1(cGα)). Now, we have

lt(π1(cGα)) = lt(f1), where π1(cGα) = π1(c)π1(Gα) = π1(c)(π1(G))α, therefore

lt(f1) = lt(π1(c)(π1(G))α), where π1(c) ∈ R1 and (π1(G))α is a π1(G)-monomial.

Thus π1(G) is a strong Sagbi basis for π1(B). �

Theorem 2.3 illustrates that a Sagbi basis could be computed with the help of

S-join of Sagbi bases of the projected subalgebras. Remark 2.5 shows that a Sagbi

basis obtained after the S-join of strong Sagbi bases need not to be a strong Sagbi

basis. Therefore, to find out strong Sagbi basis, we need a concept of strong S-join

which could be achieved by adding some elements in the S-join.

Definition 2.7. Let G ⊂ R1[x] and H ⊂ R2[x]. An element (g, h) ∈ R1[G]×R2[H]

is said to be a critical element of R1[G]× R2[H] if lm(g) = lm(h). If this element

cannot be expressed in the form g = g1 · · · gs, h = h1 · · ·hs such that lm(gi) =

lm(hi), gi ∈ R1[G], hi ∈ R2[H], deg(gi) ≥ 1 and deg(hi) ≥ 1, for all i, then it is

referred to as a necessary critical element.

Remark 2.8. Note that if (g, h) is a necessary critical element of R1[G]×R2[H],

then for some r ∈ R1 and s ∈ R2, (rg, sh) may also be a necessary critical element

of R1[G]×R2[H].

Remark 2.9. If a critical element (g, h) of R1[G]×R2[H] is not a necessary critical

element of R1[G] × R2[H], then it can be factored into a product as g = g1 · · · gs,
h = h1 · · ·hs such that lm(gi) = lm(hi), i.e., (gi, hi) is a necessary critical element of

R1[G]× R2[H] for all i. Additionally, we only consider necessary critical elements

(g, h) that cannot be factored as g = rg
′

and h = sh
′

for some 1 6= r ∈ R1,

1 6= s ∈ R2 and a necessary critical element (g
′
, h

′
).

For G ⊂ R1[x] and H ⊂ R2[x], let ΛG,H={κ(g, h) | (g, h) is a required necessary

critical element of R1[G]×R2[H]}. Now, we define the strong S-join of G and H.
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Definition 2.10. Let G = {g1, · · · , gs} and H = {h1, · · · , ht} be subsets of R1[x]

and R2[x], respectively. Then the strong S-join of G and H, denoted by GtH, is

defined as:

GtH = G tH ∪ π(ΛG,H)

Now, we find a strong Sagbi basis for a subalgebra in R[x] for R = R1 × R2 by

using the strong S-join of the strong Sagbi bases for the projected subalgebras in

R1[x] and R2[x].

Theorem 2.11. Let B be a non-zero subalgebra of R[x] which admits a finite strong

Sagbi basis. Let Gi be a subset of πi(B) for i = 1, 2. Then κ(G1tG2) is a strong

Sagbi basis for B if and only if Gi is a strong Sagbi basis for πi(B) for all i = 1, 2.

Proof. ⇐= Assume that Gi is a strong Sagbi basis of πi(B) for i = 1, 2 and

G = κ(G1tG2). We need to show that for any f ∈ B \{0}, there are a G-monomial

τ and c ∈ R \ {0} such that lt(f) = lt(cτ). Let πi(f) = fi for i = 1, 2. We have the

following cases:

(i) f1 6= 0 and f2 = 0: Then lt(f) = (lc(f1), 0)lm(f1). Since G1 is a strong

Sagbi basis for π1(B), there exists a G1-monomial Gα1
1 (where α1 ∈ N|G1|) and

c1 ∈ R1 such that lt(f1) = lt(c1G
α1
1 ). Therefore, lc(f1) = c1lc(G

α1
1 ) and lm(f1) =

lm(Gα1
1 ). Define τ = κ(Gα1

1 , 0), a G-monomial, and c = (c1, 0) ∈ R. Note that

lc(τ) = lc(Gα1 , 0), therefore, lt(cτ) = c lc(τ)lm(τ) = (c1, 0)(lc(Gα1
1 ), 0)lm(Gα1

1 ) =

(c1lc(G
α1
1 ), 0)lm(Gα1

1 ) = (lc(f1), 0)lm(f1) = lt(f). Thus lt(f) = lt(cτ).

(ii) f1 = 0 and f2 6= 0: Same as (i).

(iii) f1 6= 0, f2 6= 0 and lm(f1) > lm(f2): Similar to (i) since lt(f) = (lc(f1), 0)lm(f1).

(iv) f1 6= 0, f2 6= 0 and lm(f1) < lm(f2): Similar to (ii) since lt(f) = (0, lc(f2))lm(f2).

(v) f1 6= 0, f2 6= 0 and lm(f1) = lm(f2) = lm(f): Then lt(f) = (lc(f1), lc(f2))lm(f1)

=(lc(f1), lc(f2))lm(f2). Since lm(f1) = lm(f2), we have that (f1, f2) is a critical

element of π1(B)×π2(B). By Remark 2.9, we can write it as f1 = g1 · · · gs = usi=1gi

and f2 = g
′

1 · · · g
′

s = usi=1g
′

i such that lm(gi) = lm(g
′

i) for all i, and (gi, g
′

i)

are necessary critical elements which implies that κ(gi, g
′

i) ∈ ΛG1,G2
. Note that

(f1, f2) = (g1, · · · gs, g
′

1 · · · g
′

s) which is denoted by usi=1(gi, g
′

i). On applying κ, we

have f = κ(f1, f2) = κ(usi=1(gi, g
′

i)) = usi=1κ(gi, g
′

i). Moreover, lm(usi=1κ(gi, g
′

i)) =

lm(usi=1gi) = lm(usi=1g
′

i) = lm(f2) = lm(f1) = lm(f) and lc(usi=1κ(gi, g
′

i)) =

lc(κ(f1, f2)) = lc(f). Since κ(gi, g
′

i) ∈ ΛG1,G2
⊂ G, usi=1κ(gi, g

′

i) could be con-

sidered as a G-monomial denoted by τ . By setting c = (1, 1), we have, lt(cτ) =

(1, 1)lc(τ)lm(τ) = (1, 1)lc(usi=1κ(gi, g
′

i))lm(usi=1κ(gi, g
′

i)) = lc(f)lm(f) = lt(f). It

follows from Proposition 2.6. �
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The following proposition plays an important role in generalizing Theorem 2.11

inductively for n-sets.

Proposition 2.12. Let Gi be a subset of Ri[x] for i = 1, 2, 3, then

κ(κ(G1tG2)tG3) = κ(G1tκ(G2tG3)).

Proof. First, we prove the result for the elements obtained after the S-join of Gi

for i = 1, 2, 3. Let h ∈ κ(κ(G1tG2)tG3), we have three cases: h = κ(κ(g1, 0), 0),

h = κ(κ(0, g2), 0), h = κ(0, g3), where gi ∈ Gi for i = 1, 2, 3. Note that, according

to the cases, we can write h as: h = κ(κ(g1, 0), 0) = κ(g1, 0), h = κ(κ(0, g2), 0) =

κ(0, κ(g2, 0)), h = κ(0, g3) = κ(0, κ(0, g3)), respectively. In all the cases, h can be

viewed as an element of κ(G1tκ(G2tG3)). The reverse inclusion could be proved

in the same way.

Now, we prove the result for the elements of π(ΛGi,Gj
). Let h ∈ κ(κ(G1tG2)tG3)

such that lm(h) = lm(κ(h
′
, h3)) with h

′
= κ(h1, h2) ∈ κ(G1tG2)), where hi ∈ Gi

for i = 1, 2, 3. Note that lm(h) = lm(h
′
) = lm(h3). Moreover, lm(h

′
) = lm(h1) =

lm(h2). We can see an element (h2, h3) ∈ π(ΛG2,G3
) since lm(h2) = lm(h3),

therefore κ(h2, h3) ∈ κ(G2tG3). Thus h = κ(h1, κ(h2, h3)) ∈ κ(G1tκ(G2tG3)).

Similarly, we can show the reverse inclusion. �

Remark 2.13. We can compute the necessary critical elements algorithmically:

Let e = (e1, · · · , et) ∈ Nt be the exponent vector of the monomial xe11 · · ·x
et
t ,

G ⊂ R1[x] and H ⊂ R2[x]. For each g ∈ G and h ∈ H, let eg and eh be the

leading exponents (exponent of leading monomial) of g and h, respectively. We

need to find non-zero vectors ~a ∈ N|G| and ~b ∈ N|H| such that lm(G~a) = lm(H
~b).

Let ~y = {yg}g∈G and ~z = {zh}h∈H be variable vectors whose entries can take non-

negative integer values such that lm(G~y) = lm(H~z). This leads to a system of t

linear equations given by: ∑
g∈G

egyg −
∑
h∈H

ehzh = 0 (1)

where 0 is the zero vector in Nt. The vectors ~a = {ag}g∈G and ~b = {bh}h∈H are

solutions to System 1 if and only if
∑
g∈G egag =

∑
h∈H ehbh, which implies that

lm(G~a) = lm(H
~b), i.e., (G~a, H

~b) is a critical element. By using a basis of the

solution set of System 1, we have all necessary critical elements of R1[G]×R2[H].

Based on Theorem 2.11 and Proposition 2.12, we develop the following algorithm

which computes a strong Sagbi basis for a subalgebra in R[x] with the help of

strong S-join of the strong Sagbi bases for the projected subalgebras in Ri[x] for

i = 1, · · · , n.
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Algorithm 2.14. Input: a monomial ordering > on R[x], a finite subset F of

R[x], an algorithm SBi to compute strong Sagbi basis for every πi(F ) ⊆ Ri[x]

(i = 1, · · · , n).

Output: A strong Sagbi basis G for subalgebra R[F ].

Instructions:

• For i=1 to n;

Gi = SBi(πi(F ));

minimize Gi

• G = G1;

• For i=2 to n;

Compute all the necessary critical elements of R1[G] × R[Gi] by using

Remark 2.13;

Compute Λ(G,Gi);

GtGi = G tGi ∪ π(Λ(G,Gi));

G = κ(GtGi);
minimize G;

• return G.

Example 2.15. Let G = {2x2 + 3x + 1, 2x + 1} ⊂ Z6[x] and B = Z6[G] as in

Example 2.4. The projected subalgebras π1(χ(B)) = Z2[x + 1, 1] and π2(χ(B)) =

Z3[2x2 + 1, 2x + 1] have minimal strong Sagbi bases G1 = {g1 = x} and G2 =

{g′

1 = x2 + 2, g
′

2 = x + 2}, respectively. From Remark 2.5, χ−1(κ(G1 t G2)) =

{3x, 2+4x2, 4x+2} is not a strong Sagbi basis of B, therefore, we need a strong join

G1tG2 = G1tG2∪π(ΛG1,G2
). Note that by using the approach of finding necessary

critical elements described in Remark 2.13, the corresponding system is a single

linear equation yg1 − 2zg′1
− zg′2 . A basis {(2,1,0), (1,0,1), (3,1,1)} to the solution

set of this equation provides us the necessary critical elements: (g21 , g
′

1), (g1, g
′

2)

and (g31 , g
′

1g
′

2). Therefore, on applying κ on these elements, we have ΛG1,G2
=

{(1, 1)x2 + (0, 2), (1, 1)x + (0, 2), (1, 1)x2 + (0, 1)x + (0, 1)}. From Theorem 2.11,

χ−1(κ(G1tG2)) = {3x, 4x2 + 2, 4x+ 2, x2 + 2, x+ 2, x3 + 2x2 + 2x+ 4} is a strong

Sagbi basis for B and G
′

= {3x, x2 + 2, x+ 2} is a minimal strong Sagbi basis for

B.

3. Existence of strong Sagbi basis over the principal ideal rings

In this section, as an application of our main results in Section 2, we prove the

existence of a strong Sagbi basis in the case of principal ideal rings. We restrict R

to be a principal ideal ring onwards in this section unless specified.
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Definition 3.1. Let G ⊂ R[x] \ {0} be a finite set and f, h ∈ R[x].

(i) We say that f reduces to h with respect to G in one step (and that f is

reducible with respect to G) if h = f −
∑
i ciG

αi where ci ∈ R, αi ∈ N|G|,
such that lt(f) =

∑
i cilt(G

αi), ci 6= 0, lc(f) =
∑
i cilc(G

αi) and lm(f) =

lm(Gαi), for all i (see [6, Definition 3.2]). We write it as f −→G h.

(ii) We say that f strongly reduces to h with respect to G in one step (and

that f is strongly reducible with respect to G) if h = f − cGα where c ∈ R,

α ∈ N|G| such that lt(f) = lt(cGα).

Remark 3.2. A set S is a Sagbi basis for a subalgebra B if and only if for all f ∈ B,

f −→S
∗ 0, i.e., there exists a chain of one-step reductions and h1, h2, · · · , hk in B

such that f −→S h1 −→S h2 −→S · · ·hk −→S 0 (see [6, Proposition 3.3]) which is

equivalent to the condition that f has a subalgebra standard representation with

respect to S.

Proposition 3.3. Let R be a finite chain ring1 and G ⊂ R[x] \ {0} be a finite set

and f, h ∈ R[x]. Then f is one step reducible with respect to G if and only if f is

strongly one step reducible with respect to G.

Proof. Let f be one step reducible to h with respect to G, then h = f −
∑
i ciG

αi

where ci ∈ R, αi ∈ N|G|, such that lt(f) =
∑
i cilt(G

αi), ci 6= 0, lc(f) =∑
i cilc(G

αi) and lm(f) = lm(Gαi), for all i. The collection of the leading co-

efficients lc(Gαi) is a subset of R which is a finite chain ring, therefore, by [7,

Proposition 2.2], there exist some j and αi ∈ R such that lc(Gαi) = αilc(G
αj )

for every i. Then lt(f) = lt(cGαj ) for some c ∈ R. Hence f is strongly one-step

reducible with respect to G. �

Proposition 3.3 and Remark 3.2 yield the following result.

Corollary 3.4. Let B be a subalgebra over a finite-chain ring R. Then G is a

Sagbi basis for B if and only if G is a strong Sagbi basis for B.

Proof. Let G be a Sagbi basis for B. For any f ∈ B, f −→S
∗ 0. At the first

one step of the reduction of f , we can assume f −→S h1, so h1 = f −
∑
i ciG

αi

such that lm(f) = lm(Gαi) for all i, and lc(f) =
∑
i cilc(G

αi). Since the one-step

reduction is also a strong one-step reduction in R by Proposition 3.3, there exists

some i = i0 such that lm(f) = lm(Gαi0 ), and lc(f) = clc(Gαi0 ) for some c ∈ R,

i.e., lt(f) = lt(cGαi0 ). It implies that G is a strong Sagbi basis for B. The converse

holds trivially. �

1Finite chain rings are precisely finite local rings whose maximal ideals are principal.
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Now, we show the existence of a strong Sagbi basis of a subalgebra over a prin-

cipal ideal ring provided that it has a finite Sagbi basis.

Proposition 3.5. Let R be a principal ideal ring and B be a subalgebra of R[x]

with a finite Sagbi basis. Then B has a strong Sagbi basis.

Proof. We have R ∼= R1 × · · · ×Rm, where each Ri is a principal ideal domain or

a finite chain ring (see Theorem 33, Section 15, Chapter 4 of [11]).

In the case when Ri is a principal ideal domain, we can obtain a strong Sagbi

basis of πi(B) over Ri (see [1, Proposition 5.1 and Theorem 5.2]).

If Ri is a finite-chain ring, from assumption and Proposition 2.1, πi(B) has a

finite Sagbi basis. From Corollary 3.4, it is a strong Sagbi basis for πi(B).

Each πi(B) ⊆ Ri[x] admits a strong Sagbi basis. Therefore, with the help of

Theorem 2.11, we can construct a strong Sagbi basis for B in R[x]. �

Example 3.6. Let H = {4xy+x, 3x2 +y} ⊂ Z20[x] and a subalgebra B = Z20[H],

where Z20 is a principal ideal ring isomorphic to Z4 × Z5 which is a product of

principal ideal domain Z5 and a finite chain ring Z4. The isomorphism χ : Z20 →
Z4 × Z5 induces an isomorphism χ : Z20[x] → (Z4 × Z5)[x] and χ(B) = (Z4 ×
Z5)[χ(H)]. Note that G1 = {x, y} and G2 = {4xy + x, x2 + 2y} are Sagbi bases

for π1(χ(B)) = Z4[H1] and π2(χ(B)) = Z5[H2], respectively, where Hi = πi(H).

With the help of Theorem 2.11, we obtain a strong Sagbi basis κ(G1tG2) for χ(B).

Therefore, χ−1(κ(G1tG2)) = {5x, 5y, 4x + 16xy, 16x2 + 12y, xy + 4x, x2 + 12y} is

a strong Sagbi basis for Z20[H]. Moreover, G = {5x, 5y, xy + 4x, x2 + 12y} is a

minimal strong Sagbi basis for Z20[H].
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